C.U.SHAH UNIVERSITY Winter Examination-2018

Subject Name: Real Analysis

Subject Code: 5SC02REA1		Branch: M.Sc. (Mathematics)	
Semester: 2	Date: 23/10/2018	Time: 02:30 To 05:30	Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1 Answer the Following questions: (07)a) Define: Algebra of sets (02)**b**) If $A, B \subseteq R$ be such that $m^*(B) = 0$ then prove that $m^*(A \cup B) = m^*(A)$. (02)c) If $A = \{1, 2, 3, ..., 10\}$ then find $m^*(A)$. (01)d) True or false: Every union of algebra is an algebra of X. (01)Define: F_{σ} - set e) (01)Q-2 Attempt all questions (14)**a**) Let \mathcal{A} be an algebra on X and $\{A_i\} \in \mathcal{A}$ then there exist $\{B_i\} \in \mathcal{A}$ such that (06)i) $\bigcup_{i=1}^{n} A_{i} = \bigcup_{i=1}^{n} B_{i}$ and ii) $B_{i} \cap B_{j} = \phi$, for $i \neq j$. **b**) Prove that outer measure of an interval is its length. $(\mathbf{08})$ OR Q-2 Attempt all questions (14)a) Prove that P is non-measurable set. Where P contains one element from each (10)equivalence classes E_{λ} and $\bigcup E_{\lambda} = X = [0,1)$. (04)**b**) Consider X = R and $A = \{A \in R / either A \text{ or } A^c \text{ is countable}\}$ then show that A is a σ -Algebra on R.

Page 1 of 3

		(14)		
Q-3				
a)	Prove that every borel set is a measurable set.			
b)	If $E_1, E_2,, E_n$ be a finite sequence of measurable sets and they are mutually			
	disjoint then for any $A \subseteq R$, $m^* \left(A \cap \left(\bigcup_{i=1}^n E_i \right) \right) = \sum_{i=1}^n m^* \left(A \cap E_i \right).$			
c)	Give an example of an algebra which is not an σ -Algebra of X and explain.	(04)		
OR				
Q-3	Attempt all questions	(14)		
a)) Give an example of measurable map which is not a Riemann integrable map and explain.			
b)) Let ϕ and ψ are simple functions on E which are vanish outside of a set of finite (
	measure then prove that $\int a\phi + b\psi = a \int \phi + b \int \psi$.			
c)	Let E_1 and E_2 be two measurable subsets of R then prove that	(04)		
	$m(E_1 \cup E_2) + m(E_1 \cap E_2) = m(E_1) + m(E_2).$			
SECTION – II				
Q-4	Answer the Following questions:	(07)		
a)	a) State Fatou's lemma.			
b)	Define: $BV[a,b]$.	(02)		
c) d)	State Egoroff's theorem.	(02) (01)		
d)	Define: Lebesgue integral.	(01)		
Q-5	Attempt all questions	(14)		
a)	State and prove Bounded convergence theorem.	(07)		
b)	State and prove monotone convergence theorem.	(07)		
OR				
Q-5	Attempt all questions	(14)		
a)	Let <i>f</i> be a bounded measurable function on $[a,b]$ and $F(x) = \int_{a}^{x} f(t) dt + F(a)$	(07)		
	then $F'(x) = f(x)$ almost everywhere on $[a,b]$.			
b)	State and prove Lebesgue dominated convergence theorem.	(07)		
Q-6	Attempt all questions	(14)		
a)	F is absolutely continuous function on $[a,b]$ iff F is indefinite integral.	(07)		
b)	b) State and prove Beppo-Levi's theorem.			
c)	Write Chebychev's inequality.	(02)		
Page 2 of 3				
	Page 2 01 3			

Page 2 of 3

OR			
Q-6	Attempt all Questions	(14)	
a)	Suppose $f, g \in BV[a, b]$ then prove the following:	(07)	
	i) $fg \in BV[a,b]$ and ii) $\frac{f}{g} \in BV[a,b]$, where $g \neq 0$.		
b)	If f is integrable over E then $ f $ is integrable over E and $\left \int_{E} f \right \le \int_{E} f $.	(04)	
c)	If $A, B \subseteq R$ be such that $m^*(A) = 0$ then prove that $m^*(A \cup B) = m^*(B)$.	(03)	

Page 3 of 3

